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Abstract

A nonparametric anomalous hypothesis testing problem is investigated, in which
there are totally n sequences with s anomalous sequences to be detected. Each typical
sequence contains m independent and identically distributed (i.i.d.) samples drawn
from a distribution p, whereas each anomalous sequence containsm i.i.d. samples drawn
from a distribution q that is distinct from p. The distributions p and q are assumed to
be unknown in advance. Distribution-free tests are constructed using maximum mean
discrepancy as the metric, which is based on mean embeddings of distributions into a
reproducing kernel Hilbert space. The probability of error is bounded as a function
of the sample size m, the number s of anomalous sequences and the number n of
sequences. It is then shown that with s known, the constructed test is exponentially
consistent if m is greater than a constant factor of log n, for any p and q, whereas with
s unknown, m should has an order strictly greater than logn. Furthermore, it is shown
that no test can be consistent for arbitrary p and q if m is less than a constant factor
of log n, thus the order-level optimality of the proposed test is established. Numerical
results are provided to demonstrate that our tests outperform (or perform as well as)
the tests based on other competitive approaches under various cases.
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1 Introduction

In this paper, we study an anomalous hypothesis testing problem (see Figure 1), in which
there are totally n sequences out of which s anomalous sequences need to be detected. Each
typical sequence consists of m independent and identically distributed (i.i.d.) samples drawn
from a distribution p, whereas each anomalous sequence contains i.i.d. samples drawn from a
distribution q that is distinct from p. The distributions p and q are assumed to be unknown.
The goal is to build distribution-free tests to detect the s anomalous data sequences generated
by q out of all data sequences.

Solutions to such a problem are very useful in many applications. For example, in cognitive
wireless networks, signals follow different distributions either p or q depending on whether
the channel is busy or vacant. A major issue in such a network is to identify vacant channels
out of a large number of busy channels based on their corresponding signals in order to utilize
vacant channels for improving spectral efficiency. This problem was studied in [2] and [3]
under the assumption that p and q are known, whereas in this paper, we study the problem
with unknown p and q. Other applications include detecting anomalous DNA sequences out
of typical sequences, detecting virus infected computers from other virus free computers, and
detecting slightly modified images from other untouched images.

The parametric model of the problem has been well studied, e.g., [2], in which it is assumed
that the distributions p and q are known in advance and can be exploited for detection. How-
ever, the nonparametric model is less explored, in which it is assumed that the distributions p
and q are unknown and can be arbitrary. Recently, Li, Nitinawarat and Veeravalli proposed
the divergence-based generalized likelihood tests in [4], and characterized the error decay
exponents of these tests. However, [4] studied only the case when the distributions p and q
are discrete with finite alphabets, and their tests utilize empirical probability mass functions
of p and q.

In this paper, we study the nonparametric model, in which distributions p and q can
be continuous and arbitrary. The major challenges to solve this problem (compared to
the discrete case studied in [4]) lie in: (1) it is difficult to accurately estimate continuous
distributions with limited samples for further anomalous hypothesis testing; (2) it is difficult
to design low complexity tests with continuous distributions; and (3) building distribution-
free consistent tests (and further guaranteeing exponential error decay) is challenging for
arbitrary distributions.

Our approach adopts the maximum mean discrepancy (MMD) introduced in [5] as the
distance metric between two distributions. The idea is to map probability distributions into
a reproducing kernel Hilbert space (RKHS) (as proposed in [6, 7]) such that the distance
between the two probabilities can be measured by the distance between their corresponding
embeddings in the RKHS. MMD can be easily estimated based on samples, and hence yields
low complexity tests. In this paper, we apply MMD as a metric to construct our tests for
detecting anomalous data sequences. In contrast to consistency analysis in classical theory
as in [4], which assumes that the problem dimension (i.e., the number n of sequences and
the number s of anomalous sequences) is fixed and the sample size m increases, our focus is
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on the regime in which the problem dimension (i.e., n and s) increases. This is motivated
by applications, in which anomalous sequences are required to be detected out of a large
number of typical data sequences. It is clear that as n (and possibly s) becomes large, it is
increasingly challenging to consistently detect all anomalous sequences. It then requires that
the sample size m correspondingly increases in order to guarantee more accurate detection.
Hence, we are interested in characterizing how the sample size m should scale with n and s
in order to guarantee the consistency of our tests.

In this paper, we adopt the following notations to express asymptotic scaling of quantities
with n:

• f(n) = O(g(n)): there exist k, n0 > 0 s.t. for all n > n0, |f(n)| ≤ k|g(n)|;
• f(n) = Ω(g(n)): there exist k, n0 > 0 s.t. for all n > n0, f(n) ≥ kg(n);

• f(n) = Θ(g(n)): there exist k1, k2, n0 > 0 s.t. for all n > n0, k1g(n) ≤ f(n) ≤ k2g(n);

• f(n) = o(g(n)): for all k > 0, there exists n0 > 0 s.t. for all n > n0, |f(n)| ≤ kg(n);

• f(n) = ω(g(n)): for all k > 0, there exists n0 > 0 s.t. for all n > n0, |f(n)| ≥ k|g(n)|.

1.1 Main Contributions

We summarize our main contributions as follows.

(1) We construct MMD-based distribution-free tests, which enjoy low computational com-
plexity and are proven to be powerful for nonparametric detection.

(2) We analyze the performance guarantee for the proposed MMD-based test. We bound
the probability of error as a function of the sample size m, the number s of anomalous
sequences, and the total number n of sequences. We then show that with s known, the
constructed test is exponentially consistent if m scales at the order Ω(log n) for any p and
q, whereas with s unknown, m should scale at the order ω(log n) (i.e., strictly larger than
Ω(log n)). Thus, the lack of the information about s results in an order-level increase in
sample size m needed for consistent detection. We further develop low complexity consistent
tests by exploiting the asymptotic behavior of s and n.

(3) We further derive a necessary condition which states that no test can be consistent
for arbitrary p and q if m scales at the order O(log n), thus establishing the order-level
optimality of the MMD-based test.

(4) We provide an interesting example study, in which the distribution q is the mixture of
the distribution p and the anomalous distribution q̃. In such a case, the anomalous sequence
contains only sparse samples from the anomalous distribution. Our results for such a model
quantitatively characterize the impact of the sparsity level of anomalous samples on the
scaling behavior of the sample size m, in order to guarantee consistency of the proposed
tests.

We provide numerical results to demonstrate our theoretical assertions and compare our
tests with other competitive approaches. Our numerical results demonstrate that the MMD-
based test has a better performance than the divergence-based generalized likelihood test
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proposed in [4] when the sample size m is not very large. We also demonstrate that the
MMD-based test outperforms (or performs as well as) other competitive tests including t-
test, FR-Wolf test [8], FR-Smirnov test [8], Hall test [9] as well as kernel density ratio (KDR)
test [10] and kernel Fisher discriminant analysis (KFDA) test [11].

1.2 Related Work

In this subsection, we review relevant problems and explain their differences from our model.
The parametric model of our problem with known p and q has been studied, e.g., in [2]. The
nonparametric model with unknown p and q were studied recently in [4], where p and q are
assumed to be discrete distributions. Our study addresses the general scenario in which p
and q can be arbitrary (not necessarily discrete) and unknown. Furthermore, we allow the
sample size to scale with the total number n of sequences (which goes to infinity), whereas [4]
studies the regime in which n is fixed and only the sample size goes to infinity.

As generalization of the classical two-sample problem, which tests whether two sets of sam-
ples are generated from the same or different distributions, our problem involves much richer
ingredients and more technical challenges. Our problem involves interplay of the number
n of sequences, the number s of anomalous sequences, and the sample size m to guaran-
tee test consistency, whereas the two sample problem involves only the sample complexity.
Furthermore, test consistency in our problem depends on the knowledge of the number of
anomalous sequences, whereas the two sample problem does not have such an issue. These
new issues naturally require considerably more technical efforts such as analysis of the MMD
estimator via samples from mixed distributions, bounding the asymptotic behavior of dif-
ference between two MMD estimators, and development of necessary conditions on sample
complexity.

A popular type of outlier detection problems have been widely studied in data mining,
e.g., [12, 13], in which a number of data samples are given and outliers that are far away
from other samples (typically in Euclidean distance) need to be detected. These studies
typically do not assume underlying statistical models for data samples, whereas our problem
assumes that data are drawn from either distribution p or q. Thus, our problem is to detect
an outlier distribution rather than an outlier data sample.

Another related but different model has been studied in [14–16], which tests whether a
new sample is generated from the same distribution as a given set of training samples. Such
a problem is binary composite hypothesis testing, whereas our problem is multi-hypothesis
testing, detecting anomalous sequences out of a set of sequences that contain both typical
and anomalous sequences. Furthermore, such a problem assumes availability of a training set
of (typical) samples, whereas our problem does not assume any sample known to be typical
in advance.
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1.3 Organization of the Paper

The rest of the paper is organized as follows. In Section 2, we describe the problem formula-
tion. In Section 3, we present our tests and theoretical results on the performance guarantee
of these tests. In Section 4, we further present the necessary conditions to guarantee test
consistency. In Section 5, we provide numerical results. Finally in Section 6, we conclude
our paper with remarks on future work.

2 Problem Statement

Figure 1: An anomalous hypothesis testing model with data sequences generated by typical
distribution p and anomalous distribution q.

We study an anomalous hypothesis testing problem (see Figure 1), in which there are in
total n data sequences denoted by Yk for 1 ≤ k ≤ n. Each data sequence Yk consists of
m i.i.d. samples yk1, . . . , ykm drawn from either a typical distribution p or an anomalous
distribution q, where p 6= q. In the sequel, we use the notation Yk := (yk1, . . . , ykm). We
assume that the distributions p and q are arbitrary and unknown in advance. Our goal is to
build distribution-free tests to detect data sequences generated by the anomalous distribution
q.

We assume that s out of n data sequences are anomalous, i.e., are generated by the
anomalous distribution q. We study both cases with s known and unknown, respectively.
We are interested in the asymptotical regime, in which the number n of data sequences goes
to infinity. We assume that the number s of anomalous sequences satisfies s

n
→ α as n→∞,

where 0 ≤ α ≤ 1. This includes the following three cases: (1) s is fixed, and nonzero as
n → ∞; (2) s → ∞, but s

n
→ 0 as n → ∞; and (3) s

n
approaches to a positive constant,

which is less than or equal to 1. Some of our results are also applicable to the case with
s = 0, i.e., the null hypothesis in which there is no anomalous sequence. We will comment
on such a case when the corresponding results are presented.

We next define the probability of detection error as the performance measure of tests.
We let I denote the set that contains indices of all anomalous data sequences. Hence, the
cardinality |I| = s. We let În denote a sequence of index sets that contain indices of all
anomalous data sequences claimed by a corresponding sequence of tests.
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Definition 1. A sequence of tests are said to be consistent if

lim
n→∞

Pe = lim
n→∞

P{În 6= In} = 0. (1)

We note that the above definition of consistency is with respect to the number n of se-
quences instead of the number m of samples. However, as n becomes large (and possibly
as s becomes large), it is increasingly challenging to consistently detect all anomalous data
sequences. It then requires that the number m of samples becomes large enough in order to
more accurately detect anomalous sequences. Therefore, the limit in the above definition in
fact refers to the asymptotic regime, in which m scales fast enough as n goes to infinity in
order to guarantee asymptotically small probability of error.

Furthermore, for a consistent test, it is also desirable that the error probability decays
exponentially fast with respect to the number m of samples.

Definition 2. A sequence of tests are said to be exponentially consistent if

lim inf
m→∞

− 1

m
logPe = lim inf

m→∞
− 1

m
logP{În 6= In} > 0. (2)

In this paper, our goal is to construct distribution-free tests for detecting anomalous se-
quences, and characterize the scaling behavior of m with n (and possibly s) so that the
developed tests are consistent (and possibly exponentially consistent).

An example with sparse anomalous samples. In this paper, we also study an inter-
esting example, in which the distribution q is a mixture of the distribution p with probability
1−ε and an anomalous distribution q̃ with probability ε, where 0 < ε ≤ 1, i.e., q = (1−ε)p+εq̃.
It can be seen that if ε is small, the majority of samples in an anomalous sequence are drawn
from the distribution p, and only sparse samples are drawn from the anomalous distribution
q̃. The value of ε captures the sparsity level of anomalous samples. Here, ε can scale as
n increases, and is hence denoted by εn. We study how εn affects the number of samples
needed for consistent detection.

3 Test and Performance Guarantee

We adopt the maximum mean discrepancy (MMD) introduced in [5] as the distance metric
to construct our test. More specifically, suppose each distribution p belonging to P (a set of
probability distributions) is mapped to an element in the RKHS H as follows

µp(·) = Ep[k(·, x)] =

∫
k(·, x)dp(x),

where k(·, ·) is the kernel function associated with H. It has been shown in [17,18] that the
above mean embedding mapping is injective for many RKHSs such as those associated with
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Gaussian and Laplace kernels. The MMD between p and q is defined to be the distance
between µp and µq in RKHS given by

MMD[p, q] := ‖µp − µq‖H. (3)

Due to the reproducing property of kernel, it can be easily shown that

MMD2[p, q] =Ex,x′ [k(x, x′)]− 2Ex,y[k(x, y)] + Ey,y′ [k(y, y′)], (4)

where x and x′ have independent but the same distribution p, and y and y′ have independent
but the same distribution q. An unbiased estimator of MMD2[p, q] based on l1 samples of X
and l2 samples of Y is given as follows,

MMD2
u[X,Y ] =

1

l1(l1 − 1)

l1∑
i=1

l1∑
j 6=i

k(xi, xj) +
1

l2(l2 − 1)

l2∑
i=1

l2∑
j 6=i

k(yi, yj)−
2

l1l2

l1∑
i=1

l2∑
j=1

k(xi, yj).

(5)

In this section, we design and analyze MMD-based tests for both cases with s known and
unknown, respectively. We then study the example with sparse anomalous samples.

3.1 Known s

In this subsection, we consider the case with s known. We start with a simple case with
s = 1, and then study the more general case, in which s

n
→ α as n→∞, where 0 ≤ α ≤ 1.

Consider the case with s = 1. For each sequence Yk, we use Y k to denote the (n − 1)m
dimensional sequence that stacks all other sequences together, as given by

Y k = {Y1, . . . , Yk−1, Yk+1, . . . , Yn}.

We then compute MMD2
u[Yk, Y k] for 1 ≤ k ≤ n. It is clear that if Yk is the anomalous

sequence, then Y k is fully composed of typical sequences. Hence, MMD2
u[Yk, Y k] is a good

estimator of MMD2[p, q], which is a positive constant. On the other hand, if Yk is a typical
sequence, Y k is composed of n − 2 sequences generated by p and only one sequence gener-
ated by q. As n increases, the impact of the anomalous sequence on Y k is negligible, and
MMD2

u[Yk, Y k] should be asymptotically close to zero. Based on the above understanding,
we construct the following test when s = 1. The sequence k∗ is claimed to be anomalous if

k∗ = arg max
1≤k≤n

MMD2
u[Yk, Y k]. (6)

The following proposition characterizes the condition under which the above test is con-
sistent.
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Proposition 1. Consider the anomalous hypothesis testing model with one anomalous se-
quence, i.e., s = 1. Suppose the test (6) applies a bounded kernel with 0 ≤ k(x, y) ≤ K for
any (x, y). Then, the probability of error is upper bounded as follows,

Pe ≤ exp
(

log n− m(MMD2[p, q]− ξ)2

16K2(1 + Θ( 1
n
))

)
, (7)

where ξ is a constant which can be picked arbitrarily close to zero. Furthermore, the test (6)
is exponentially consistent if

m ≥ 16K2(1 + η)

MMD4[p, q]
log n, (8)

where η is any positive constant.

Proof. See Appendix A.

Proposition 1 implies that for the scenario with one anomalous sequence, Ω(log n) samples
are sufficient to guarantee consistent detection.

We next consider the case with s ≥ 1. More specifically, we consider the case with s
n
→ α

as n → ∞, where 0 ≤ α < 1
2
. Although we focus on the case with α < 1

2
, the case with

α > 1
2

is similar, with the roles of p and q being exchanged. We first study the case with
s known. Our test is a natural generalization of the test (6) except now the test picks the
sequences with the largest s values of MMD2

u[Yk, Y k], which is given by

Î ={k : MMD2
u[Yk, Y k] is among the s largest values of MMD2

u[Yi, Y i] for i = 1, . . . , n}.
(9)

The following theorem characterizes the condition under which the above test is consistent.

Theorem 1. Consider the anomalous hypothesis testing model with s anomalous sequences,
where s

n
→ α as n → ∞ and 0 ≤ α < 1

2
. Assume the value of s is known. Further assume

that the test (9) applies a bounded kernel with 0 ≤ k(x, y) ≤ K for any (x, y). Then the
probability of error is upper bounded as follows,

Pe ≤ exp
(

log((n− s)s)− m((1− 2α)MMD2[p, q]− ξ)2

16K2(1 + Θ( 1
n
))

)
, (10)

where ξ is a constant which can be picked arbitrarily close to zero. Furthermore, the test (9)
is exponentially consistent for any p and q if

m ≥ 16K2(1 + η)

(1− 2α)2MMD4[p, q]
log(s(n− s)), (11)

where η is any positive constant.

Proof. See Appendix B.
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We note that log((n − s)s) = Θ(log n), for 1 ≤ s < n. Hence, Theorem 1 implies that
even with s anomalous sequence, the test (9) requires only Ω(log n) samples in each data
sequence in order to guarantee consistency of the test. Hence, the increase of s does not
affect the order-level requirement on the sample size m. We further note that Theorem 1 is
also applicable to the case in which α > 1

2
simply with the roles of p and q exchanged.

Remark 1. For the case with s
n
→ 0, as n → ∞, we can also build a test with reduced

computational complexity as follows. For each Yk, instead of using n− 1 sequences to build
Y k as in the test (9), we take any l sequences out of the remaining n− 1 sequences to build

a sequence Ỹk, such that l
n
→ 0 and s

l
→ 0 as n → ∞. Such an l exists for any s and n

satisfying s
n
→ 0 (e.g., l =

√
sn). It can be shown that using Ỹk to replace Y k in the test (9)

still leads to consistent detection under the same condition given in Theorem 1. Since l is
much smaller than n, computational complexity is substantially reduced.

We note that Theorem 1 (which includes Proposition 1 as a special case) characterizes the
conditions to guarantee test consistency for a pair of fixed but unknown distributions p and
q. Hence, the condition (11) depends on the underlying distributions p and q. In fact, such
a condition further yields the following condition that guarantees the test to be universally
consistent for arbitrary p and q.

Proposition 2 (Universal Consistency). Consider the anomalous hypothesis testing problem,
where s

n
→ α as n → ∞ and 0 ≤ α < 1

2
. Assume s is known. Further assume that the

test (9) applies a bounded kernel with 0 ≤ k(x, y) ≤ K for any (x, y). Then the test (9) is
universally consistent for any arbitrary pair of p and q, if

m = ω(log n). (12)

Proof. This result follows from (11) and the facts that log((n−s)s) = Θ(log n) and MMD[p, q]
is constant for any given p and q.

3.2 Unknown s

In this subsection, we consider the case, in which the value of s is unknown. And we focus on
the scenario that s

n
→ 0, as n→∞. This includes two cases: (1) s is fixed and (2) s→∞

and s
n
→ 0 as n → ∞. Without knowledge of s, the test in (9) is not applicable anymore,

because it depends on the value of s.

In order to build a test now, we first observe that for each k, although Y k contains mixed
samples from p and q, it is dominated by samples from p due to the above assumption on s.
Thus, for large enough m and n, MMD2

u[Yk, Y k] should be close to zero if Yk is drawn from
p, and should be far away enough from zero (in fact, close to MMD2[p, q]) if Yk is drawn
from q. Based on this understanding, we construct the following test:

Î = {k : MMD2
u[Yk, Y k] > δn} (13)

9



where δn → 0 and s2

n2δn
→ 0 as n→∞. The reason for the condition s2

n2δn
→ 0 is to guarantee

that δn converges to 0 more slowly than MMD2
u[Yk, Y k] with Yk drawn from p so that as n

goes to infinity, δn asymptotically falls between MMD2
u[Yk, Y k] with Yk drawn from p and

MMD2
u[Yk, Y k] with Yk drawn from q. We note that the scaling behavior of s as n increases

needs to be known in order to pick δn for the test. This is reasonable to assume because
mostly in practice the scale of anomalous data sequences can be estimated based on domain
knowledge.

The following theorem characterizes the condition under which the test (13) is consistent.

Theorem 2. Consider the anomalous hypothesis testing model with s anomalous sequences,
where s

n
→ 0, as n → ∞. Assume that s is unknown in advance. Further assume that the

test (13) adopts a threshold δn such that δn → 0 and s2

n2δn
→ 0, as n → ∞, and the test

applies a bounded kernel with 0 ≤ k(x, y) ≤ K for any (x, y). Then the probability of error
is upper bounded as follows:

Pe ≤ exp

(
log s− m(MMD2[p, q]− δn)2

16K2(1 + Θ( 1
n
))

)
+ exp

(
log(n− s)−

m(δn − E
[
MMD2

u[Yk, Y k]
]
)2

16K2(1 + Θ( 1
n
))

)
.

(14)

Furthermore, the test (13) is consistent if

m ≥ 16(1 + η)K2 max
{ log(max{1, s})

(MMD2[p, q]− δn)2
,

log(n− s)
(δn − E

[
MMD2

u[Y, Y ]
]
)2

}
, (15)

where η is any positive constant. In the above equation, E[MMD2
u[Y, Y ]] is a constant, where

Y is a sequence generated by p and Y is a stack of (n − 1) sequences with s sequences
generated by q and the remaining sequences generated by p.

Proof. See Appendix C.

We note that Theorem 2 is also applicable to the case with s = 0, i.e., the null hypothesis
when there is no anomalous sequence. We further note that the test (13) is not exponentially
consistent. In fact, when there is no null hypothesis (i.e., s > 1), an exponentially consistent
test can be built as follows. For each subsect S of 1, . . . , n, we compute MMD2

u[YS , Y S ], and
the test finds the set of indices corresponding to the largest average value. However, for such
a test to be consistent, m needs to scale linearly with n, which is not desirable.

Theorem 2 implies that m should be in the order ω(log n) to guarantee test consistency,
because s

n
→ 0 and δn → 0 as n→∞. Compared to the case with s known (for which it is

sufficient for m to scale at the order Θ(log n)), the threshold on m has order-level increase
due to lack of the knowledge of s. Furthermore, the above understanding on the order-level
condition on m also yields the following sufficient condition for the test to be universally
consistent.

Proposition 3 (Universal Consistency). Consider the anomalous hypothesis testing problem,
where s

n
→ 0, as n → ∞. We assume that s is unknown in advance. Further assume that
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the test (13) adopts a threshold δn such that δn → 0 and s2

n2δn
→ 0, as n → ∞, and the

test applies a bounded kernel with 0 ≤ k(x, y) ≤ K for any (x, y). Then the test (13) is
universally consistent for any arbitrary pair of p and q, if

m = ω(log n). (16)

Comparison between Proposition 3 with Proposition 2 implies that the knowledge of s does
not affect the order-level sample complexity to guarantee a test to be universally consistent.

3.3 Example with Sparse Anomalous Samples

We study the example with the anomalous distribution q = (1− εn)p+ εnq̃ as we introduce
in Section 2. The following result characterizes the impact of sparsity level εn on the scaling
behavior of m to guarantee consistent detection.

Corollary 1. Consider the model with the typical distribution p and the anomalous distri-
bution q = (1 − εn)p + εnq̃, where 0 < εn ≤ 1. If s is known, then the test (9) is consistent
if

m ≥ 16K2(1 + η)

(1− 2α)2ε4nMMD4[p, q̃]
log(s(n− s)), (17)

where η is any positive constant.

If s is unknown, then the test (13) is consistent if

m ≥ 16(1 + η)K2 max
{ log(max{1, s})

(ε2nMMD2[p, q̃]− δn)2
,

log(n− s)
(δn − E

[
MMD2

u[Y, Y ]
]
)2

}
, (18)

where η is any positive constant, s2ε2n
n2δn
→ 0 and δn

ε2n
→ 0 as n→∞, Y is a sequence generated

by p, and Y is a stack of (n−1) sequences with s sequences generated by q̃ and the remaining
sequences generated by p.

Proof. The proof follows from Theorems 1 and 2 by substituting:

MMD2[p, q] = Ex,x′ [k(x, x′)]− 2Ex,y[k(x, y)] + Ey,y′ [k(y, y′)]

= Ex,x′ [k(x, x′)]− 2(1− εn)Ex,x′ [k(x, x′)]− 2εnEx,ỹ[k(x, ỹ)]

+ (1− εn)2Ex,x′ [k(x, x′)] + 2εn(1− εn)Ex,ỹ[k(x, ỹ)] + ε2nEỹ,ỹ′ [k(ỹ, ỹ′)]

= ε2nMMD2[p, q̃], (19)

where x and x′ are independent but have the same distribution p, y and y′ are independent
but have the same distribution q, and ỹ and ỹ′ are independent but have the same distribution
q̃.
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Corollary 1 implies that if εn is a constant, then the scaling behavior of m needed for
consistent detection does not change. However, if εn → 0 as n → ∞, i.e., anomalous
sequences contain more sparse anomalous samples, then m needs to scale faster with n in
order to guarantee consistent detection. This is reasonable because the sample size m should
have a higher order to cancel out the impact of the increasingly sparse anomalous samples in
each anomalous sequence. Corollary 1 explicitly captures such tradeoff between the sample
size m and the sparsity level εn of anomalous samples in addition to n and s.

4 Necessary Condition and Optimality

In Section 3, we characterize sufficient conditions on the sample size m under which the
MMD-based test is guaranteed to be consistent for any distribution pair p and q. In this
section, we characterize conditions under which no test is universally consistent for arbitrary
p and q. We first study the case with s = 1 for which we develop our key idea of the proof.
We then generalize our study to the case with s ≥ 1.

Proposition 4. Consider the anomalous hypothesis testing problem with one anomalous
sequence. If the sample size m satisfies

m = O(log n), (20)

then there exists no test that is universally consistent for any arbitrary distribution pair p
and q.

Proof. See Appendix D. The idea of the proof is to show that for a certain distribution
pair p and q, even the optimal parametric test (with known p and q) is not consistent under
the condition given in the theorem. This thus implies that under the same condition, no
nonparametric test is universally consistent for arbitrary p and q.

We now generalize our result to the case with s ≥ 1, and provide the following proposition.

Proposition 5. Consider the anomalous hypothesis testing problem with s anomalous se-
quences. If the sample size m satisfies

m = O

(
log n

s

s

)
, (21)

then there exists no test that is universally consistent for arbitrary distribution pair p and q.

Proof. It can be shown that the probability of error of this problem is lower bounded by
a special scenario, in which anomalous sequences can only be a group of s sequences with
consecutive indices, i.e., one of the following possibilities: the (is + 1)-th to (i + 1)s-th
sequences, for i = 0, . . . , bn

s
c − 1. Hence, there are bn

s
c candidates. Such a specific scenario

can be viewed as the problem of detecting one anomalous sequence with length ms out of
bn
s
c sequences. The proposition then follows from arguments similar to those used to prove

Proposition 4.
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The sufficient and necessary conditions on sample complexity that we derive so far establish
the following performance optimality for the MMD-based test.

Theorem 3 (Optimality). Consider the nonparametric anomalous hypothesis testing prob-
lem with s ≥ 1. For s being known and unknown, the MMD-based test (9) (under the
conditions in Propositions 2) and the test (13) (under the conditions in Proposition 3) are
respectively order-level optimal in sample complexity required to guarantee universal consis-
tency for arbitrary p and q.

Proof. The proof follows by comparing Propositions 2 and 3 with Proposition 5 and observing
the fact that m = O(log n) in Proposition 5 for finite s.

5 Numerical Results

In this section, we provide numerical results to demonstrate our theoretical assertions, and
compare our MMD-based tests with a number of other tests. We also apply our test to a
real data set.

We first demonstrate our theorem on sample complexity. We note that although the fol-
lowing experiment is performed for chosen distributions p and q, our tests are nonparametric
and do not exploit the information about p and q. We choose the distribution p to be Gaus-
sian with mean zero and variance one, i.e., N (0, 1), and choose the anomalous distribution
q to be Laplace distribution with mean one and variance one. We use the Gaussian kernel

k(x, x′) = exp(− |x−x
′|2

2σ2 ) with σ = 1. We set s = 1. We run the test for cases with n = 40
and 100, respectively. In Figure 2, we plot how the probability of error changes with m. For
illustrational convenience, we normalize m by log n, i.e., the horizontal axis represents m

logn
.

It is clear from the figure that when m
logn

is above a certain threshold, the probability of error
converges to zero, which is consistent with our theoretical results. Furthermore, for different
values of n, the two curves drop to zero almost at the same threshold. This observation
confirms Proposition 1, which states that the threshold on m

logn
depends only on the bound

K of the kernel and MMD of the two distributions. Both quantities are constant for the two
values of n.

We next compare the MMD-based test with the divergence-based generalized likelihood
test developed in [4]. Since the test in [4] is applicable only when the distributions p and q
are discrete and have finite alphabets, we set the distributions p and q to be binary with p
having probability 0.3 to take “0” (and probability 0.7 to take “1”), and q having probability
0.7 to take “0” (and probability 0.3 to take “1”). We let s = 1 and assume that s is known.
We let n = 50. In Figure 3, we plot the probability of error as a function of the sample size
m. It can be seen that the MMD-based test outperforms the divergence-based generalized
likelihood test. We note that it has been shown in [4] that the generalized likelihood test has
optimal convergence rate in the limiting case when n is infinite. Our numerical comparison,
on the other hand, demonstrates that the MMD-based test performs as well as or even better
than the generalized likelihood test for moderate n.
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Figure 2: The performance of the MMD-based test.
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Figure 3: Comparison of the MMD-based test with divergence-based generalized likelihood
test.
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We finally compare the performance of the MMD-based test with a few other competitive
tests on a real data set. We choose the collection of daily maximum temperature of Syracuse
(New York, USA) in July from 1993 to 2012 as the typical data sequences, and the collection
of daily maximum temperature of Makapulapai (Hawaii, USA) in May from 1993 to 2012 as
anomalous sequences. Here, each data sequence contains daily maximum temperatures of a
certain day across twenty years from 1993 to 2012. In our experiment, the data set contains
32 sequences in total, including one temperature sequence of Hawaii and 31 sequences of
Syracuse. The probability of error is averaged over all cases with each using one sequence of
Hawaii as the anomalous sequence. Although it seems easy to detect the sequence of Hawaii
out of the sequences of Syracuse, the temperatures we compare for the two places are in May
for Hawaii and July for Syracuse, during which the two places have approximately the same
mean in temperature. In this way, it may not be easy to detect the anomalous sequence (in
fact, some tests do not perform well as shown in Figure 4).
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Figure 4: Comparison of the MMD-based test with four other tests on a real data set.

We first compare the performance of the MMD-based test with t-test, FR-Wolf test, FR-
Smirnov test, and Hall test on the above data set. For the MMD-based test, we use the
Gaussian kernel with σ = 1. In Figure 4, we plot the probability of error as a function of
the length of sequence m for all tests. It can be seen that the MMD-based test, Hall test,
and FR-wolf test have the best performances, and all of the three tests are consistent with
the probability of error converging to zero as m goes to infinity. Furthermore, comparing to
Hall and FR-wolf tests, the MMD-based test has the lowest computational complexity.

We further compare the performance of MMD-based test with the kernel-based tests KFDA
and KDR for the same data set. For all three tests, we use Gaussian kernel with σ = 1. In
Figure 5, we plot the probability of error as a function of the length of sequence for all tests.
It can be seen that all tests are consistent with the probability of error converging to zero
as m increases, and the MMD-based test has the best performance among the three tests.
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Figure 5: Comparison of the MMD-based test with two other kernel-based tests on a real
data set.

6 Conclusion

In this paper, we have investigated a nonparametric anomalous hypothesis testing problem,
in which typical and anomalous data sequences contain i.i.d. samples drawn from different
distributions p and q, respectively. We have built MMD-based distribution-free tests to
detect anomalous sequences. We have characterized the scaling behavior of the sample size
m as the total number n of sequences goes to infinity in order to guarantee consistency of
the developed tests. We have further characterized the conditions under which no test is
universally consistent for arbitrary p and q, and thus established that our proposed tests
are order-level optimal. Our study of this problem demonstrates a useful application of the
mean embedding of distributions and MMD, and we believe that such an approach can be
applied to solving various other nonparametric problems.

Appendix

A Proof of Proposition 1

We first introduce the McDiarmid’s inequality which is useful in bounding the probability
of error in our proof.

Lemma 1 (McDiarmid’s Inequality). Let f : Xm → R be a function such that for all
i ∈ {1, . . . ,m}, there exist ci <∞ for which

sup
X∈Xm,x̃∈X

|f(x1, . . . , xm)− f(x1, . . . xi−1, x̃, xi+1, . . . , xm)| ≤ ci. (22)
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Then for all probability measure p and every ε > 0,

PX

(
f(X)− EX(f(X)) > ε

)
< exp

(
− 2ε2∑m

i=1 c
2
i

)
, (23)

where X denotes (x1, . . . , xm), EX denotes the expectation over the m random variables
xi ∼ p, and PX denotes the probability over these m variables.

In order to analyze the probability of error for the test (6), without loss of generality,
we assume that the first sequence is the anomalous sequence generated by the anomalous
distribution q. Hence,

Pe = P (k∗ 6= 1)

= P

(
∃k 6= 1 : MMD2

u[Yk, Y k] > MMD2
u[Y1, Y 1]

)
≤

n∑
k=2

P

(
MMD2

u[Yk, Y k] > MMD2
u[Y1, Y 1]

)
. (24)

For notational convenience, we stack Y1, . . . , Yn into a nm dimensional row vector Y =
{yi, 1 ≤ i ≤ nm}, where Yk = {y(k−1)m+1, . . . , ykm}. And we define n′ = (n− 1)m. We then
have,

MMD2
u[Y1, Y 1] =

1

m(m− 1)

m,m∑
i,j=1
i 6=j

k(yi, yj) +
1

n′(n′ − 1)

nm∑
i,j=m+1
i 6=j

k(yi, yj)−
2

mn′

m,nm∑
i=1

j=m+1

k(yi, yj).

(25)

For 2 ≤ k ≤ n, we have,

MMD2
u[Yk, Y k] =

1

m(m− 1)

km,km∑
i,j=(k−1)m+1

i 6=j

k(yi, yj) +
1

n′(n′ − 1)

( m,m∑
i,j=1
i 6=j

k(yi, yj) + 2

m,(k−1)m∑
i=1

j=m+1

k(yi, yj)

+ 2

m,nm∑
i=1

j=km+1

k(yi, yj) +

(k−1)m,(k−1)m∑
i,j=m+1
i 6=j

k(yi, yj) +

nm,nm∑
i,j=km+1

i 6=j

k(yi, yj) + 2

(k−1)m,nm∑
i=m+1
j=km+1

k(yi, yj)

)

− 2

mn′

( m,km∑
i=1

j=(k−1)m+1

k(yi, yj) +

(k−1)m,km∑
i=m+1

j=(k−1)m+1

k(yi, yj) +

km,nm∑
i=(k−1)m+1
j=km+1

k(yi, yj)

)
. (26)

We define
∆k = MMD2

u[Yk, Y k]−MMD2
u[Y1, Y 1].

It can be shown that,
E[MMD2

u[Y1, Y 1]] = MMD2[p, q],
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and

E[MMD2
u[Yk, Y k]] = Ex,x′k(x, x′) +

1

(n− 1)m((n− 1)m− 1)

(
m(m− 1)Ey,y′k(y, y′)

+ 2m2(n− 2)Ex,yk(x, y) + ((n− 2)m− 1)(n− 2)mEx,x′k(x, x′)

)
− 2

(n− 1)m2

(
m2Ex,yk(x, y) + (n− 2)m2Ex,x′k(x, x′)

)
→ 0, as n→∞, (27)

where x and x′ are independent but have the same distribution p, y and y′ are independent
but have the same distribution q. Hence, there exists a constant ξ that satisfies

E[MMD2
u[Yk, Y k]] < ξ < MMD2[p, q], (28)

for large enough n. Here, ξ can be arbitrarily close to zero as n→∞.

We next divide the entries in {y1, . . . , ynm} into three groups: Y1 = {y1, . . . , ym}, Yk =

{y(k−1)m+1 . . . , ykm}, and Ŷk that contains the remaining entries. We define Y−a as Y with
the a-th component ya being removed.

For 1 ≤ a ≤ m, ya affects ∆k through the following terms

1

n′(n′ − 1)

(
2

m∑
j=1
j 6=a

k(ya, yj) + 2

(k−1)m∑
j=m+1

k(ya, yj) + 2
nm∑

j=km+1

k(ya, yj)

)

− 2

mn′

km∑
j=(k−1)m+1

k(ya, yj)−
2

m(m− 1)

m∑
j=1
k 6=a

k(ya, yj) +
2

mn′

nm∑
j=m+1

k(ya, yj). (29)

Hence, for 1 ≤ a ≤ m, we have

|∆k

(
Y−a, ya

)
−∆k

(
Y−a, y

′
a

)
| ≤ 4K

m

(
1 + Θ

(
1

n

))
. (30)

For (k − 1)m+ 1 ≤ a ≤ km, ya affects ∆k through

2

m(m− 1)

km∑
j=(k−1)m+1

j 6=a

k(ya, yj)−
2

mn′

( m∑
i=1

k(yi, ya) +

(k−1)m∑
i=m+1

k(yi, ya) +
nm∑

j=km+1

k(ya, yj)

)

− 2

n′(n′ − 1)

nm∑
j=m+1
j 6=a

k(ya, yj) +
2

mn′

m∑
i=1

k(ya, yi). (31)

Hence, for (k − 1)m+ 1 ≤ a ≤ km, we have

|∆k

(
Y−a, ya

)
−∆k

(
Y−a, y

′
a

)
| ≤ 4K

m

(
1 + Θ

(
1

n

))
. (32)
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For m+ 1 ≤ a ≤ (k − 1)m and km+ 1 ≤ a ≤ nm, ya affects ∆k through

2

n′(n′ − 1)

( m∑
i=1

k(yi, ya) +

(k−1)m∑
i=m+1
i 6=a

k(yi, ya) +
nm∑

j=km+1

k(ya, yj)

)
− 2

mn′

km∑
j=(k−1)m+1

k(ya, yj)

− 2

n′(n′ − 1)

nm∑
j=m+1
j 6=a

k(ya, yj) +
2

mn′

km∑
i=(k−1)m+1

k(yi, ya). (33)

Hence, for m+ 1 ≤ a ≤ (k − 1)m or km+ 1 ≤ a ≤ nm, we have

|∆k

(
Y−a, ya

)
−∆k

(
Y−a, y

′
a

)
| ≤ 1

m
Θ

(
1

n

)
. (34)

We further derive the following probability,

P

(
MMD2

u[Yk, Y k] > MMD2
u[Y1, Y 1]

)
= P

(
MMD2

u[Yk, Y k]−MMD2
u[Y1, Y 1] + MMD2[p, q] > MMD2[p, q]

)
(a)

≤ P

(
MMD2

u[Yk, Y k]−MMD2
u[Y1, Y 1] + MMD2[p, q]− E[MMD2

u[Yk, Y k]] > MMD2[p, q]− ξ
)
,

(35)

where (a) follows from (28).

Combining (30), (32), (34), and applying McDiarmid’s inequality, we have,

P

(
MMD2

u[Yk, Y k] > MMD2
u[Y1, Y 1]

)
≤ exp

(
− 2(MMD2[p, q]− ξ)2

2m16K2

m2 (1 + Θ( 1
n
)) + 1

m
Θ( 1

n
)

)
= exp

(
− m(MMD2[p, q]− ξ)2

16K2(1 + Θ( 1
n
))

)
(36)

Hence,

Pe ≤ exp

(
log n− m(MMD2[p, q]− ξ)2

16K2(1 + Θ( 1
n
))

)
. (37)

Since ξ can be picked arbitrarily close to zero, we conclude that if

m ≥ 16K2(1 + η)

MMD4[p, q]
log n, (38)

where η is any positive constant, then Pe → 0 as n → ∞. It is also clear that if the
above condition is satisfied, Pe converges to zero exponentially fast with respect to m. This
completes the proof.
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B Proof of Theorem 1

We analyze the performance of the test (9). Without loss of generality, we assume that the
first s sequences are anomalous and are generated from distribution q. Hence, the probability
of error can be bounded as,

Pe =P

(
∃k > s : MMD2

u[Yk, Y k] > min
1≤l≤s

MMD2
u[Yl, Y l]

)
≤

n∑
k=s+1

s∑
l=1

P

(
MMD2

u[Yk, Y k] > MMD2
u[Yl, Y l]

)
. (39)

Using the fact that s
n
→ α, where 0 ≤ α < 1

2
, and using (25) and (26), we can show that

E
[
MMD2

u[Yl, Y l]
]
→ (1− α)2MMD2[p, q], (40)

as n→∞ for 1 ≤ l ≤ s, and

E
[
MMD2

u[Yk, Y k]
]
→ α2MMD2[p, q], (41)

as n→∞ for s+ 1 ≤ k ≤ n. Hence, there exists a constant ξ such that

0 < ξ < (1− α)2MMD2[p, q]− α2MMD2[p, q]

and

E
[
MMD2

u[Yk, Y k]−MMD2
u[Yl, Y l]

]
< α2MMD2[p, q]− (1− α)2MMD2[p, q] + ξ, (42)

for large enough n.

Therefore, we obtain,

P

(
MMD2

u[Yk, Y k]−MMD2
u[Yl, Y l] > 0

)
=P

(
MMD2

u[Yk, Y k]−MMD2
u[Yl, Y l]− E

[
MMD2

u[Yk, Y k]−MMD2
u[Yl, Y l]

]
> −E

[
MMD2

u[Yk, Y k]−MMD2
u[Yl, Y l]

])
≤P
(

MMD2
u[Yk, Y k]−MMD2

u[Yl, Y l]− E
[
MMD2

u[Yk, Y k]−MMD2
u[Yl, Y l]

]
> ((1− α)2 − α2)MMD2[p, q])− ξ

)
, (43)

for large enough n.

Applying McDiarmid’s inequality, we obtain,

Pe ≤ exp

(
log((n− s)s)− m((1− 2α)MMD2[p, q]− ξ)2

16K2(1 + Θ( 1
n
))

)
. (44)
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Since ξ can be arbitrarily small, we conclude that if,

m ≥ 16K2(1 + η)

(1− 2α)2MMD4[p, q]
log(s(n− s)), (45)

where η is any positive constant, then Pe → 0, as n → ∞. It is also clear that if the above
condition is satisfied, Pe converges to zero exponentially fast with respect to m.

C Proof of Theorem 2

We analyze the performance of the test (13). Without loss of generality, we assume that the
first s sequences are the anomalous sequences. Hence,

Pe = P

((
∃1 ≤ l ≤ s : MMD2

u[Yl, Y l] ≤ δn
)
or
(
∃s+ 1 ≤ k ≤ n : MMD2

u[Yk, Y k] > δn
))

≤
s∑
l=1

P

(
MMD2

u[Yl, Y l] ≤ δn

)
+

n∑
k=s+1

P

(
MMD2

u[Yk, Y k] > δn

)
. (46)

Using the fact that s
n
→ 0 as n→∞, and using (25) and (26) we obtain,

E
[
MMD2

u[Yl, Y l]
]
→ MMD2[p, q], (47)

E
[
MMD2

u[Yk, Y k]
]
→ 0, (48)

as n→∞, for 1 ≤ l ≤ s and s+ 1 ≤ k ≤ n.

Due to (47), for any constant ε, −E
[
MMD2

u[Yl, Y l]
]
< −MMD2[p, q] + ε for large enough

n.

For 1 ≤ l ≤ s, we drive,

P

(
MMD2

u[Yl, Y l] ≤ δn

)
= P

(
MMD2

u[Yl, Y l]− E
[
MMD2

u[Yl, Y l]
]
≤ −E

[
MMD2

u[Yl, Y l]
]

+ δn

)
≤ P

(
MMD2

u[Yl, Y l]− E
[
MMD2

u[Yl, Y l] ≤ −(MMD2[p, q]− ε− δn)

)
, (49)

for large enough n. Therefore, by applying McDiarmid’s inequality, we obtain,

P

(
MMD2

u[Yl, Y l] ≤ δn

)
≤ exp

(
− 2(MMD2[p, q]− ε− δn)2

16K2

m
(1 + Θ( 1

n
)) + 16K2

m
(1 + Θ( 1

n
))

)
= exp

(
− m(MMD2[p, q]− ε− δn)2

16K2(1 + Θ( 1
n
))

)
, (50)
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for large enough n.

For s+ 1 ≤ k ≤ n,

P

(
MMD2

u[Yk, Y k] > δn

)
= P

(
MMD2

u[Yk, Y k]− E
[
MMD2

u[Yk, Y k]
]
> δn − E

[
MMD2

u[Yk, Y k]
])
. (51)

Using the fact that s2

n2δn
→ 0 as n→∞, we can show that

E
[
MMD2

u[Yk, Y k]
]

δn
→ 0,

as n → ∞. Hence, for large enough n, δn > E
[
MMD2

u[Yk, Y k]
]
. Therefore, using McDi-

armid’s inequality, we have

P

(
MMD2

u[Yk, Y k] > δn

)
≤ exp

(
−

2(δn − E
[
MMD2

u[Yk, Y k]
]
)2

16K2

m
(1 + Θ( 1

n
)) + 16K2

m
(1 + Θ( 1

n
))

)
= exp

(
−
m(δn − E

[
MMD2

u[Yk, Y k]
]
)2

16K2(1 + Θ( 1
n
))

)
. (52)

Therefore,

Pe ≤ s exp

(
− m(MMD2[p, q]− ε− δn)2

16K2(1 + Θ( 1
n
))

)
+ (n− s) exp

(
−
m(δn − E

[
MMD2

u[Yk, Y k]
]
)2

16K2(1 + Θ( 1
n
))

)
= exp

(
log s− m(MMD2[p, q]− ε− δn)2

16K2(1 + Θ( 1
n
))

)
+ exp

(
log(n− s)−

m(δn − E
[
MMD2

u[Yk, Y k]
]
)2

16K2(1 + Θ( 1
n
))

)
, (53)

for large enough n. Hence, we conclude that if

m ≥ 16(1 + η)K2

(MMD2[p, q]− δn)2
log s, (54)

and

m ≥ 16(1 + η)K2

(δn − E
[
MMD2

u[Yk, Y k]
]
)2

log(n− s), (55)
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where η is any positive constant, then Pe → 0, as n→∞.

When s = 0, Pe =
∑n

k=1 P (MMD2
u[Yk, Yk] > δn). Then applying (52), we have if

m ≥ 16(1 + η)K2

(δn − E
[
MMD2

u[Yk, Y k]
]
)2

log n, (56)

where η is any positive constant, then Pe → 0, as n→∞.

D Proof of Proposition 4

We first introduce an interesting property of Gaussian distribution, which is useful for bound-
ing the probability of error for our problem.

Lemma 2. [19] For the standard Gaussian distribution with mean zero and variance one,
there exists positive constants c1 and c2 such that the cumulative distribution function (CDF)
Φ(x) of the standard Gaussian distribution satisfies the following inequalities:

c1
log n

< sup
−∞<x<∞

|Φn(anx+ bn)−G(x)| < c2
log n

(57)

for all positive integer n, where G(x) = ee
−x

(i.e., the CDF of the Gumbel distribution),
anbn = 1. In particular, bn can be approximated as

bn =
√

2 log n−
1
2

log(4π log n)
√

2 log n
+O

(
1

log n

)
. (58)

Our main idea of the proof is to show that under a certain distribution pair p and q, even
the optimal parametric test is not consistent under the condition given in the theorem. This
thus implies that under the same condition, no nonparametric test is universally consistent
for arbitrary p and q. Towards this end, we consider the case, in which p and q are Gaussian
with the same variance but mean shift, i.e., p = N (0, 1) and q = N (1, 1). The optimal test
with known p and q is the following maximum likelihood (ML) test.

î = arg max
1≤i≤n

{Pi(Y nm)}, (59)

where Pi(Y
nm) denotes the probability of Y nm if the i-th sequence is anomalous. The

probability of error under the ML test is given by:

Pe =
1

n

n∑
i=1

Pi
(
Pi(Y

nm) ≤ max
k 6=i

Pk(Y
nm)
)
, (60)

where Pi denotes the probability evaluated when i-th sequence is anomalous. By the sym-
metry of the problem,

Pi
(
Pi(Y

nm) ≤ max
k 6=i

Pk(Y
nm)
)

= Pj
(
Pj(Y

nm) ≤ max
k 6=j

Pk(Y
nm)
)
, (61)
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for any 1 ≤ i, j ≤ n. Hence, we have

Pe = P1

(
P1(Y

nm) ≤ max
k 6=1

Pk(Y
nm)
)

= P1

( 1√
m

m∑
i=1

Y1i ≤ max
2≤k≤n

1√
m

m∑
i=1

Yki

)
. (62)

For convenience, we define B1 := 1√
m

∑m
i=1 Y1i, and Bk := 1√

m

∑m
i=1 Yki, for 2 ≤ k ≤ n.

Hence, B1 ∼ N (
√
m, 1), and Bk ∼ N (0, 1), and they are independent from each other.

With the above definitions, the probability of error can be written as

Pe = P
(
B1 ≤ max

2≤k≤n
Bk

)
= 1− P

(
max
2≤k≤n

Bk < B1

)
= 1− EB

{
Φn−1(B1)

}
(63)

where Φ is the CDF of Bk.

By Lemma 2, there exists a constant c independent of n, such that for all positive integer
n, and for all real values x,

G
(x− bn

an

)
− c

log n
≤ Φn(x) ≤ G

(x− bn
an

)
+

c

log n
, (64)

where an, bn are optimal normalizing constants, and G(x) = e−e
−x

is the CDF of the Gumbel
distribution.

Hence,

Pe = 1− EBΦn−1(B1)

≥ 1− c

log(n− 1)
− EB

{
G
(B1 − bn−1

an−1

)}
= 1− c

log(n− 1)
− ET

{
G(T )

}
, (65)

where T = B1−bn−1

an−1
, and T ∼ N (

√
m−bn−1

an−1
, 1
a2n−1

). The second term in (65) can be further

bounded as

ET
{
G(T )

}
=

∫ 0

−∞
e−e

−t

p(t)dt+

∫ +∞

0

e−e
−t

p(t)dt

≤ e−1 + P (T ≥ 0) (66)

where

P (T ≥ 0) = Q

(
0−

√
m−bn−1

an−1

1
an−1

)
= Q(bn−1 −

√
m). (67)
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In the above equations, Q(·) denotes the tail probability of the standard Gaussian dis-
tribution. If m ≤ 2(1− η) log n, where η is any positive constant, bn−1 −

√
m → ∞,

Q(bn−1 −
√
m)→ 0. Hence,

lim
n→∞

ET [G(T )] ≤ e−1. (68)

Thus, with c
logn
→ 0

lim
n→∞

Pe ≥ 1− e−1 ≈ 0.6321 > 0 (69)

as n → ∞. Therefore, if m = O(log n), where η is any positive constant, there exists no
consistent test for any arbitrary distributions p and q.
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