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Abstract—A Gaussian orthogonal relay model is investigated, where the
source transmits to the relay and destination in channel 1, and the relay
transmits to the destination in channel 2, with channels 1 and 2 being or-
thogonalized in the time–frequency plane in order to satisfy practical con-
straints. The total available channel resource (time and bandwidth) is split
into the two orthogonal channels, and the resource allocation to the two
channels is considered to be a design parameter that needs to be optimized.
The main focus of the analysis is on the case where the source-to-relay link
is better than the source-to-destination link, which is the usual scenario en-
countered in practice. A lower bound on the capacity (achievable rate) is de-
rived, and optimized over the parameter , which represents the fraction of
the resource assigned to channel 1. It is shown that the lower bound achieves
the max-flow min-cut upper bound at the optimizing , the common value
thus being the capacity of the channel at the optimizing . Furthermore,
it is shown that when the relay-to-destination signal-to-noise ratio (SNR)
is less than a certain threshold, the capacity at the optimizing is also the
maximum capacity of the channel over all possible resource allocation pa-
rameters . Finally, the achievable rates for optimal and equal resource
allocations are compared, and it is shown that optimizing the resource al-
location yields significant performance gains.

Index Terms—Achievable rate, decode-and-forward relay, parallel relay
channel.

I. INTRODUCTION

The relay channel was introduced by van der Meulen [1], and was
comprehensively studied by Cover and El Gamal [2]. In a commonly
studied version of the relay channel, no restrictions are imposed on the
transmitted and received signals at the relay node, and perfect “echo
cancellation” of the transmitted signal at the receiver of the relay is
implicitly assumed. However, such perfect echo cancellation may not
be easy to implement in practice. A practical way to isolate the trans-
mitted and received signals at the relay node is to orthogonalize these
signals. Toward this end, recent papers on relay channels have consid-
ered frequency division [3], time division [4]–[7], code division [8],
and general orthogonal division [9], [10] to orthogonalize transmitted
and received signals at the relay node.

In this correspondence, we study a Gaussian orthogonal relay model,
where the source transmits to the relay and destination in one orthog-
onal channel (channel 1), and the relay transmits to the destination in
the other orthogonal channel (channel 2). Assuming a total available
bandwidth of W hertz, the total channel resource of 2W dimensions
per second is split into the two channels, in order to orthogonalize the
transmitted and received signals at the relay node. In contrast to pre-
vious studies of this model [3], [4], [7], we allow the resource allocation
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Fig. 1. Parallel relay channel.

represented by � (resource fraction allocated to channel 1) to be a de-
sign parameter that may be optimized. We focus on the case where the
source-to-relay link is better than the source-to-destination link.
For this model, we derive a lower bound on the capacity (achiev-

able rate) as a function of resource allocation parameter �, and charac-
terize the value �� that maximizes the achievable rate. We obtain the
somewhat surprising result that the lower bound achieves the max-flow
min-cut upper bound at ��. We hence obtain the capacity of the channel
when � is fixed at ��. Furthermore, we show that when the relay-to-des-
tination signal-to-noise (SNR) is less than a certain threshold, the ca-
pacity at �� is also the maximum capacity of the channel over all pos-
sible resource allocation parameters �.
In the following sections, we first describe the channel model, and

then present our main results.

II. SYSTEM MODEL

In this section, we first present a two-dimensional discrete memo-
ryless parallel relay channel whose capacity bounds are useful for our
analysis. We then introduce the orthogonal relay model considered in
this correspondence.

A. Parallel Relay Channel Model

Consider a two-dimensional discrete memoryless parallel relay
channel, where the source, relay, and destination communicate on
two parallel (independent) links as shown in Fig. 1. The two sets
of links are indicated by solid and dashed lines, respectively, in the
figure. We use (x1; x2) and (~x1; ~x2) to denote the signals sent from
the source and relay, respectively, and (y1; y2) and (~y1; ~y2) to denote
the signals received by the destination and relay, respectively. Under
the assumption that the parallel links are independent we have the
following channel transition probability:

p(y1; y2; ~y1; ~y2 j x1; x2; ~x1; ~x2)=p(y1; ~y1 j x1; ~x1)p(y2; ~y2 j x2; ~x2):

(1)

Note that the parallel relay channel can be seen as a special case
of the classical relay channel with vector inputs and outputs. We can
hence obtain the following bounds on the capacity of the parallel relay
channel by applying the results in [2] and exploiting (1).

Theorem 1: For the discrete memoryless parallel relay channel with
transition probability defined in (1), the following lower and upper
bounds on the capacity hold:

Clow = sup
p(x ;~x )p(x ;~x )

minfI(X1; ~X1;Y1) + I(X2; ~X2;Y2);

I(X1; ~Y1 j ~X1) + I(X2; ~Y2 j ~X2)g;

Cup = sup
p(x ;~x )p(x ;~x )

minfI(X1; ~X1;Y1) + I(X2; ~X2;Y2);

I(X1; ~Y1; Y1 j ~X1) + I(X2; ~Y2; Y2 j ~X2)g (2)
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Fig. 2. Orthogonal relay channel model.

where the optimizing input distribution is such that (X1; ~X1) is inde-
pendent of (X2; ~X2).

A sketch of the proof of the above theorem is given in Appendix I.

B. Gaussian Orthogonal Relay Channel Model

Orthogonal relay channels are special cases of the parallel relay
channel, which satisfy the additional constraint that the relay should
transmit and receive in orthogonal channels (channels 1 and 2). The
reason for imposing this constraint is that in practice it is difficult to
design the relay so that it can transmit and receive at the same time in
the same frequency band. Assuming at total available bandwidth of
W hertz, the total channel resource of 2W dimensions per second is
split into channels 1 and 2. Physically this can be realized by splitting
either the total transmission time or the total bandwidth, or splitting
the dimensions in the joint time–frequency space. We let the parameter
� denote the fraction of dimensions allocated to channel 1, and hence
�� := 1 � � is the fraction of dimensions allocated to channel 2.
We refer to � as the channel resource allocation parameter. The total
channel resource needs to be split in such a way that maximizes the
achievable rate of the system.

We consider an orthogonal relay model, where the source transmits
to the relay and destination in channel 1, and the relay transmits to the
destination in channel 2. Although we may allow the source to transmit
in channel 2 without violating the orthogonal constraint on the relay
node, in our model we only permit the source to transmit in channel
1 in order to keep the source transmitter simple. It is easy to see that
this model is a special case of the parallel relay channel, with ~X1 =
0; X2 = 0; and ~Y2 = 0. We then use the notationX := X1; ~X := ~X2;
and ~Y := ~Y1 and draw the orthogonal relay channel model in Fig. 2
with the solid and dashed lines indicating the links of channels 1 and 2,
respectively. For this model, we consider the Gaussian case, where all
the transmission links are corrupted by additive white Gaussian noises.
Hence, the channel is memoryless across transmission symbols.

The relationships between input and output symbols in channels 1
and 2 can be written as

Y1 = X + Z1

Y2 = ~X + Z2

~Y = X + ~Z (3)

where Z1; Z2; and ~Z are zero-mean independent Gaussian random
variables with variances N0=2; N0=2 and ~N0=2, respectively. The
input symbol sequences fXng and f ~Xng are subject to the av-
erage power constraints P and ~P , respectively. Note that channel
1 is assigned 2W� dimensions per second, and hence we may
transmit 2W� symbols per second on this channel. Similarly, we
may transmit 2W �� symbols per second on channel 2. For nota-
tional convenience, we introduce three normalized SNR parameters,
�1 := (P=N0W ); �2 := ( ~P=N0W ); and �3 := (P= ~N0W ),
corresponding to the three transmission links of the channel (see
Fig. 2). Throughout our discussion, we are interested in the case where
�3 > �1, i.e., the source-to-relay link is better than the source-to-des-
tination link.

Our goal is to find the resource allocation parameter � that maxi-
mizes the achievable rate (lower bound on the capacity), and to study
the capacity at such an optimal resource allocation.

III. MAIN RESULTS FOR GAUSSIAN ORTHOGONAL RELAY MODEL

The following theorem summarizes the bounds on the capacity for
the Gaussian orthogonal relay model.

Theorem 2: For the Gaussian orthogonal relay model given in (3),
a lower bound on the capacity is given by

Clow = max
0���1

min �C
�1
�

+ ��C
�2
��

; �C
�3
�

b/s/Hz

(4)

where the function C(x) := (1=2) log(1 + x).
An upper bound on the capacity as a function of � is given by

Cup(�) = min �C
�1
�

+ ��C
�2
��

; �C
�3 + �1

�
b/s/Hz:

(5)

Remark 1: The lower bound is maximized over the resource allo-
cation parameter �. Throughout the correspondence, we use “optimal
resource allocation” to refer to the value �� that maximizes the lower
bound (4) on the capacity.

Proof: First, the capacity bounds in Theorem 1 can be specialized
for the orthogonal relay model, considering that the source transmits
2W� symbols per second in channel 1, and the relay transmits 2W ��
symbols per second in channel 2

Clow= sup
p(x)p(~x)

minf�I(X; Y1)+��I( ~X;Y2); �I(X; ~Y )g b/s/Hz

(6)

Cup= sup
p(x)p(~x)

minf�I(X;Y1)+��I( ~X;Y2); �I(X; ~Y ; Y1)g b/s/Hz:

(7)

Note that the bounds given in (6) and (7) are normalized to be in
bits per second per hertz. Moreover, the optimal input distribution has
X and ~X being statistically independent. We apply (6) and (7) to the
Gaussian orthogonal relay channel. For the lower bound, it is straight-
forward to see that the optimal input distributions for X and ~X are
Gaussian. For the upper bound, the same Gaussian inputX maximizes
I(X; ~Y ; Y1). This can be shown by using the maximum entropy the-
orem for random vectors with a given covariance [11, Theorem 9.6.5,
p. 234]. The bounds (4) and (5) then follow by choosing the source
input symbolX to beN (0; P=(2W�)), and the relay input symbol ~X
to be N (0; ~P=(2W ��)) independently from the source symbol. Note
that the lower bound is further tightened by maximizing over the re-
source allocation parameter �.

Remark 2: In the preceding proof, we directly applied the upper
bound for the discrete memoryless channel to the Gaussian channel.
This is only a heuristic argument. A rigorous proof for the upper bound
follows the converse proof for the discrete memoryless channel, ap-
plying the average power constraint for each codeword. The derivation
follows easily using the steps in [12, pp. 7-18 to 7-20] and is hence
omitted in this correspondence.

For convenience, we use C1;low(�) and C2;low(�) to denote, respec-
tively, the first and second terms over which the minimization is taken
in the expression for the lower bound (4), and define

Clow(�) := minfC1;low(�); C2;low(�)g: (8)

Since we are only interested in the case where the source-to-relay link
is better than the source-to-destination link, we always assume that
�3 > �1.
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Fig. 3. Capacity curve for the Gaussian orthogonal relay model.

We now discuss how to maximize the lower bound over the resource
allocation parameter �, for given �1 and �3. We essentially need to
tradeoff the two curvesC1;low(�) andC2;low(�) as functions of � shown
by the dashed and solid lines, respectively, in Fig. 3. Since

C1;low(0) > C2;low(0) and C1;low(1) < C2;low(1)

there exists at least one cross point � such that C1;low(�) = C2;low(�)
(we use �r to indicate the largest such value). Note that C2;low(�) is a
strictly increasing function of �. It can be easily shown that C1;low(�)
is a strictly concave function for � 2 [0; 1] (see Fig. 3). Therefore,
C1;low(�) has a unique maximum over � 2 [0; 1]. Let �o denote the
corresponding maximizing �.

The optimal �� that maximizes the lower bound Clow(�) falls into
the following two cases. If

C1;low(�
o) < C2;low(�

o)

(equivalently, �o > �r), then �o maximizes the lower bound Clow(�).
If

C1;low(�
o) � C2;low(�

o)

(equivalently, �o � �r), then �r maximizes the lower bound Clow(�).
As shown in Fig. 3, each value of �2 corresponds to a dashed curve

C1;low(�), and this dashed curve jointly with the solid curve C2;low(�)
determines an optimal lower bound that is one point on the “star” line,
and the corresponding value of � is the optimal ��. Also, note that for
fixed �1 and �3; �o decreases as �2 increases, andC1;low(�

o) increases
as �2 increases. Hence, there exists a ��2 such that �

o = �r , and the two
conditions ��2 � �2 and �o � �r are equivalent, i.e., ��2 � �2 , �o �

�r . Hence, those two cases are also equivalently described by �2 < ��2
and ��2 � �2, respectively. Note that ��2 is completely determined by
the given �1 and �3.

We summarize the above analysis of the optimal resource allocation
parameter �� in the following theorem.

Theorem 3: Assume �3 > �1. Then, for given �1 and �3, the op-
timal resource allocation parameter �� that maximizes the lower bound
falls into the following two cases.

Case 1: If 0 < �2 < ��2 , i.e., �
o > �r , then the optimal resource

allocation is achieved by �� = �o, and the corresponding lower bound
is

Clow = C1;low(�
o):

If �2 = 0, then �� = 1, and the lower bound becomes C(�1), the
capacity of the channel without the relay node.
Case 2: If ��2 � �2, i.e., �o � �r , then the optimal resource alloca-

tion is achieved by �� = �r , and the corresponding lower bound is

Clow = C1;low(�
r) = C2;low(�

r):

As �2 ! 1; �� ! 1, and the lower bound approaches C(�3), the
achievable rate of the relay channel without orthogonal division at high
relay-to-destination SNR.

From Theorem 3, it is clear that the Gaussian orthogonal relay
channel can achieve a rate that is at least equal to the capacity of the
direct link from the source to destination. The rate increases as �2
increases, and approaches the achievable rate of the relay channel
without orthogonal division as �2 goes to infinity.
Comparing the lower bound Clow(�

�) (using optimal resource allo-
cation for Clow(�)) with the upper bound evaluated at ��, Cup(�

�), in
the two cases of Theorem 3, we immediately conclude that the lower
bound is tight when the optimal resource allocation is used.

Theorem 4: For given parameters �1; �2; and �3 with �3 > �1, the
lower bound Clow(�

�) is the capacity of the Gaussian orthogonal relay
channel with the resource allocation parameter being fixed at ��.

Fig. 3 plots the C1;low(�) curves (dashed lines), C2;low(�) curve
(solid line), and the capacity curve (star line) at �1 = 5 dB and �3 = 15
dB. Each dashed line in the graph corresponds to one relay-to-destina-
tion SNR �2, and the tradeoff between each dashed line and the solid
line determines one optimal resource allocation parameter �� and the
capacity at the corresponding �� and �2. If �2 < ��2 , the optimal ��

and the capacity at �� are determined by the peak of the dashed curve
C1;low(�). The value ��2 is the SNR where the correspondingC1;low(�)
achieves the peak value at its cross point withC2;low(�). If �2 � ��2 , the
optimal �� is determined by the cross point ofC1;low(�) andC2;low(�).
And as �2 increases beyond ��2 , the capacity at �

� (star curve) coincides
with each corresponding point ofC2;low(�), and finally approaches the
achievable rate of the relay channel without orthogonal division as �2
goes to infinity.
The star line in the graph is the capacity curve for values of �2 in the

range [0;1). Each point on this curve corresponds to the capacity at a
certain value of �2 with resource allocation ��. It is clear from the graph
that when �2 is small, as �2 increases we assign more of the resource to
channel 2 (�� decreases). This is because a higher �2 makes the relay
more useful to the source, and hence, makes it more deserving of a
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Fig. 4. Bounds on Cmax .

larger portion of the resources. However, beyond the threshold ��2 , as
�2 increases, we assign a smaller portion of the resource to channel 2.
This behavior is also as expected because at such high �2, the relay-to-
destination link is so strong that a small assignment of the resource is
sufficient for the relay to help the source, and it is hence preferable to
assign a larger portion of the resource to the source to allow for more
information to be transferred to the relay.

We next consider the maximum rate that an orthogonal relay channel
can support. We let C(�) denote the capacity of an orthogonal relay
channel with resource allocation parameter �. Then

Cmax := max
0���1

C(�) (9)

is themaximum rate this channel can reliably support.We refer toCmax

as the maximum capacity.
In the previous analysis, since �� only maximizes the lower bound

on the capacityClow(�), it does not necessarily maximizeC(�).Hence,
the channel capacityClow(�

�) at �� may not equalCmax. However, we
show that if the relay-to-destination SNR �2 is smaller than a threshold
��2; Clow(�

�) is indeed the maximum capacity of the channel.

Theorem 5: If �2 < ��2; �
� maximizes both the lower bound

Clow(�) and the upper bound Cup(�), and hence, Cmax = Clow(�
�).

Proof: We only need to prove that, when �2 < ��2 , the �
� that

maximizes the lower bound Clow(�) also maximizes the upper bound
Cup(�). Then Cmax = Clow(�

�) is an immediate consequence of this
fact and Theorem 4.

In the proof, we will use the following two facts about ��, which are
clear in the reasoning for Theorem 3. For �2 < ��2 , the following facts
hold:

Fact I: �� maximizes C1;low(�)

Fact II: C1;low(�
�) < C2;low(�

�):

We let C1;up(�) and C2;up(�) denote the two terms over which the
minimization is taken in the expression for the upper bound (5). Then

Cup(�) = minfC1;up(�); C2;up(�)g: (10)

It is easy to see C1;up(�) = C1;low(�) from their expressions. Hence,
from Fact I, �� also maximizes C1;up(�) for �2 < ��2 .

Comparing the expressions of C1;up(�) and C2;up(�) with the ex-
pressions of C1;low(�) and C2;low(�), we have for �2 < ��2

C1;up(�
�) = C1;low(�

�)
(a)
< C2;low(�

�) < C2;up(�
�) (11)

where the inequality (a) is Fact II.

Now, since for �2 < ��2; �
� maximizes C1;up(�) and

C1;up(�
�) < C2;up(�

�)

we conclude that �� maximizes the upper bound Cup(�).

Clearly, for fixed �1 and �3; Clow = Clow(�
�) always serves as a

lower bound on Cmax for �2 > 0. We now define

Cup := max
0���1

Cup(�): (12)

It is easy to see that Cup(�) is a concave function of � for � 2 [0; 1],
and is hence maximized at some value of �, denoted by �u. Then the
maximum value Cup = Cup(�

u) is an upper bound on Cmax. We draw
these upper and lower bounds on Cmax in Fig. 4.
It is clear from Fig. 4 that when �2 < ��2 , the lower bound achieves

the upper bound, and hence the common value is themaximum capacity
Cmax. This verifies our result in Theorem 5. When �2 > ��2 , there is a
gap between the lower and upper bounds onCmax. Note that our lower
boundClow is derived based on the relay using the decode-and-forward
scheme [2, Sec. II]. It is possible for other relaying schemes to yield
tighter lower bounds for values �2 > ��2 . For example, the estimate-
and-forward scheme [2, Theorem 6] can be shown to provide a tighter
lower bound on Cmax for some values of �2 > ��2 . In particular, the
estimate-and-forward scheme achieves the following rate Cef

low:

Cef
low = max

0���1
�C

�1
�

+
�3=�

1 + b
b/s/Hz (13)

where the constant b is defined by

b :=
�
�

+ �
�

+ 1

�
1��

+ 1
(1��)=�

� 1 �
�

+ 1

: (14)

The achievable rate Cef
low satisfies the following limits:

lim
� !1

Cef
low = lim

� !1
Cup = C(�1 + �3): (15)

Equation (15) implies that Cef
low, which serves as another lower

bound on Cmax, converges to the upper bound on Cmax as �2 goes
to infinity. The common limit then becomes the maximum capacity
as �2 goes to infinity. Hence, the lower bound based on the esti-
mate-and-forward scheme must outperform the lower bound based on
the decode-and-forward scheme for large values of �2 in the range
�2 > ��2 . A similar observation has been made in [13], [14] for various
cases in relay networks without orthogonal division. However, our
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Fig. 5. Comparison of achievable rate with optimal resource allocation and achievable rate with equal resource allocation.

numerical results show that only when �3 is very close to �1, the
estimate-and-forward scheme outperforms the decode-and-forward
scheme at moderate values of �2. For most cases of �3 > �1, the con-
vergence of Cef

low is very slow, and the estimate-and-forward scheme
outperforms the decode-and-forward scheme only at extremely large
values of �2. For SNRs of practical interest, the decode-and-forward
scheme generally has a better achievable rate.

IV. COMPARISON WITH EQUAL RESOURCE ALLOCATION

Fig. 5 plots the achievable rates with the optimal resource allocation,
and compares these rates with the rates achieved by equal resource al-
location. It is clear from the graph that the performance is greatly en-
hanced by optimal resource allocation. The graph shows that there is a
threshold value of �2 beyond which the rate achieved by equal resource
allocation saturates. However, the achievable rate for optimal resource
allocation continues to grow with increasing �2.

V. CONCLUSION

We studied the capacity of a Gaussian orthogonal relay model,
treating the resource allocation as a parameter that needs to be op-
timized. We found that at the resource allocation that maximizes
the lower bound on the capacity (achievable rate), this lower bound
achieves the max-flowmin-cut upper bound on the capacity. This result
demonstrates that the capacity can be obtained for an interesting case
of the relay channel, i.e., the orthogonal relay model at the optimal
resource allocation. Our results also underline the practical importance
of resource allocation in orthogonal relay channels. Optimizing the
resource allocation may be even more important for channels where
the transmission loads for channels 1 and 2 are highly asymmetric,
e.g., in the relay multiple-access channel studied in [15], [16] and in
the relay broadcast channel studied in [14], [17], [18].

In this correspondence, our main focus has been on the case where
�3 > �1, i.e., the source-to-relay link is better than the source-to-desti-
nation link. For the case where �3 < �1, the relay node can use the par-
tial decode-and-forward scheme or the estimate-and-forward scheme to
help the transmission. The analysis of resource allocation for the latter
case would follow steps similar to those given in this correspondence.
However, in practice, for �3 < �1, the relay node may not even be
used, and hence, the study of this case is not of much interest.

In this correspondence, we have assumed that once the resource al-
location parameter � is chosen it is fixed throughout transmission. A

recent work [19] studies the case where the resource allocation param-
eter is allowed to change during transmission.

APPENDIX I
PROOF OF THEOREM 1

The following lower and upper bounds on the capacity are de-
rived by a direct application of [2, Theorems 1 and 4], taking
X = (X1; X2); ~X = ( ~X1; ~X2); Y = (Y1; Y2); and ~Y = (~Y1; ~Y2)

Clow = sup
p(x ;x ;~x ;~x )

minfI(X1; X2; ~X1; ~X2; Y1; Y2);

I(X1;X2; ~Y1; ~Y2 j ~X1; ~X2)g (16)

Cup = sup
p(x ;x ;~x ;~x )

minfI(X1; X2; ~X1; ~X2;Y1; Y2);

I(X1;X2; ~Y1; ~Y2; Y1; Y2 j ~X1; ~X2)g: (17)

The lower bound (16) is optimized over all joint distributions of
X1; X2; ~X1; ~X2. We now prove that using independent (X1; ~X1)
and (X2; ~X2) always increases the two mutual information terms in
(16), and hence, the optimization of the lower bound only needs to be
performed over such distributions.
For the first mutual information term in the lower bound expression

(16), we have

I(X1; X2; ~X1; ~X2;Y1; Y2)

= H(Y1; Y2)�H(Y1; Y2 jX1; X2; ~X1; ~X2)

� H(Y1) +H(Y2)�H(Y1 jX1; ~X1)�H(Y2 jX2; ~X2)

= I(X1; ~X1;Y1) + I(X2; ~X2;Y2) (18)

where the preceding inequality follows from the basic entropy in-
equality and the channel transition probability defined in (1). Note
that this inequality becomes equality when (X1; ~X1) is independent
of (X2; ~X2).
Similarly, for the secondmutual information term in the lower bound

expression (16), we have

I(X1;X2; ~Y1; ~Y2 j ~X1; ~X2)

= H( ~Y1; ~Y2 j ~X1; ~X2)�H( ~Y1; ~Y2 jX1; X2; ~X1; ~X2)

� H( ~Y1 j ~X1) +H( ~Y2 j ~X2)

�H( ~Y1 jX1; ~X1)�H( ~Y2 jX2; ~X2)

= I(X1; ~Y1 j ~X1) + I(X2; ~Y2 j ~X2) (19)
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where the preceding inequality becomes an equality when (X1; ~X1) is
independent of (X2; ~X2).

It is clear from (18) and (19) that independent (X1; ~X1) and
(X2; ~X2) yield a tighter lower bound. The desired lower bound
then follows by combining (18) and (19) and optimizing over such
independent input distributions. Similar arguments apply for the upper
bound.
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A New Bound for the Zero-Error Capacity Region of the
Two-User Binary Adder Channel

Mikael Mattas and Patric R. J. Östergård

Abstract—A new uniquely decodable (UD) code pair for the two-user bi-
nary adder channel (BAC) is presented. This code pair leads to an improved
bound for the zero-error capacity region of such a channel. The highest
known rate for a UD code pair for the two-user BAC is thereby improved
to (log 240) 6 1 3178. It is also demonstrated that the problem
of finding UD code pairs for the closely related binary XOR channel is in
one-to-one correspondence with a certain construction of binary one-error-
correcting codes.

Index Terms—Binary adder channel, Shannon capacity, uniquely decod-
able (UD) code, zero-error capacity.

I. INTRODUCTION

Multiuser channels have in a short time become ubiquitous due to
mobile phones and other contemporary communication systems. In the
last few years, this has renewed interest in studying some of the most
basic multiuser channels. Real-world communication systems have to
deal with issues like synchronization and error correction, which one
can ignore in a theoretical study of ideal channels. Tolhuizen [14] re-
cently studied one such channel with great success, the binary multi-
plying channel. Another channel, the binary adder channel, is consid-
ered in this correspondence.
With the two-user binary adder channel (BAC), two senders transmit

binary symbols in a synchronized way, and the output of the channel is
the ternary value obtained by real addition of the symbols (if addition is
carried out modulo 2, we have the binary XOR channel). This channel,
which is called the binary erasure multiple access channel in [5], is
depicted in Fig. 1.
Since a received 1 cannot be unambiguously decoded, information

should be transmitted in the form of codewords of a prescribed length
n. LetC andD denote the block codes of the two users. Then decoding
can be carried out unambiguously exactly when

ccc1 + ddd1 6= ccc2 + ddd2

for all distinct ccc1; ccc2 2 C and distinct ddd1; ddd2 2 D. Alternatively, one
may write

ccc1 � ccc2 6= ddd2 � ddd1:

It should be emphasized that real addition and subtraction is carried
out in the preceding formulas. The speed—the rate in bits per trans-
mission—at which information can be transmitted from the respective
user is R1 = (log

2
jCj)=n and R2 = (log

2
jDj)=n; see [5] for an in-

troduction to these and other basic concepts in information theory. The
achievable rate pairs (R1; R2) form the capacity region; in the litera-
ture two types of capacity regions are considered.
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